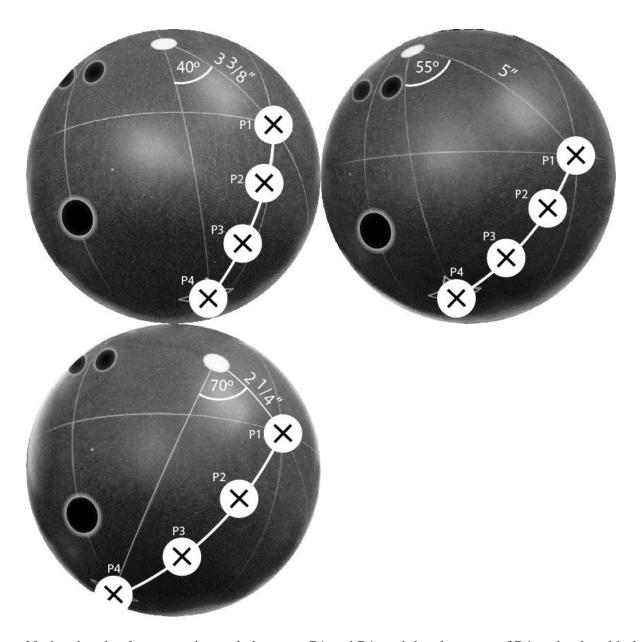
GRADIENT LINE BALANCE HOLETM

Time Line

Not that long ago balance or weight holes were strictly thought of as a drilling technique to keep side weights legal (ball balance) as well as helping to control a ball's movement to the pocket. As technology advances, drilling techniques need to change as well. MoRich is pleased to announce the next step in ball drilling --The GRADIENT LINE BALANCE HOLETM. Developed by MoRich with analytical support provided by Steve Freshour, combining this technique with Dual Angle provides the ball driller with an easy, effective and accurate method of choosing the best layout and balance hole location to match every bowler to every lane condition.


This technique continues with that learned in the DUAL ANGLE DRILLING TECHNIQUE where we now focus on the placement, size, and depth of the balance hole and its effect on the ball.

The following statement is rather important so please read it a few times.

The **GRADIENT LINE BALANCE HOLE**TM works accurately in conjunction with the **DUAL ANGLE DRILLING TECHNIQUE**TM for ALL bowling balls. Using longer-pinned balls (pinsout 3 to 5 ½ inches) makes the gradient line balance hole easier to place. Longer-pinned balls will result in the CG being below the midline and therefore eliminating problems with excessive finger weights after drilling.

Definition

What's a gradient line? It's simply the line drawn from the Positive Axis Point (PAP) to the Preferred Spin Axis (PSA). Notice that there are only 4 equally distant locations along each line. The first (P1) is always on the PAP, the fourth (P4) is always on the PSA, and the second (P2) and third (P3) are equal distant from each other as well as to their respective PAP or PSA points. The shorter the distant between the PAP and PSA, the shorter the distance between P1, P2, P3, and P4 and when the distance between the PAP and PSA is longer, the distance between P1, P2, P3, and P4 will also be longer. Let's get a better visual using the pictures below.

Notice the pin placement, its angle between P1 and P4, and the closeness of P4 to the thumbhole! This later factor is very important as we move along.

Why are we so concerned with the placement of a balance hole? Well because it has the ability to reduce or enhance a ball's potential in coordination with its drilling. Bowlers rarely want to change lines, hand positions, let alone balls. Bowlers are fickle athletes who like what they like and rarely like change. How many times has someone approached you and asked to have the next ball behave exactly like the old one that's several years old and out-of-style according to today's technology? This technique now provides you with an alternative to better match equipment to a bowler's style and needs while restoring a bowler's confidence in newer equipment.

Sounds rather simple, but now it's time to dive into the numbers!

Let's start with the first picture where we're using a 3½ X 4½ layout using a 40° drilling angle. Keep an eye on how the numbers (especially the Total Diff) change as the hole location changes.

40° X 3¾ X 20°]	
Parameter	Undrilled	P1 (PAP)	P2	Р3	P4 (PSA)	Max Size Hole @ P4		
Low RG	2.488	2.496	2.493	2.488	2.487	2.489	**Bala	
Int Diff	0.030	0.033	0.039	0.042	0.044	0.047	hole has	
Total Diff	0.048	0.046	0.055	0.062	0.065	0.069	down 1'	
Side Weight (oz)		-0.515	-0.369	0.330	0.700	0.469	when	
BAL Depth (in)		3	3	3	3	3.5	using Pafor this	
BAL Diameter (in)		1.125	1.125	1.125	1.125	1.25	layout.	
40° X 3¾ X 45°								
Parameter	Undrilled	P1 (PAP)	P2	Р3	P4 (PSA)	Max Size Hole @ P4		
Low RG	2.488	2.502	2.497	2.492	2.491	2.493		
Int Diff	0.030	0.032	0.037	0.040	0.042	0.046		
Total Diff	0.048	0.039	0.049	0.056	0.059	0.063		
Side Weight (oz)		-0.592	-0.377	0.246	0.685	0.400		
BAL Depth (in)		3	3	3	3	3.5		
BAL Diameter (in)		1.125	1.125	1.125	1.125	1.25		
40° X 3¾ X 70°								
Parameter	Undrilled	P1 (PAP	P2	P3	P4 (PSA)	Max Size Hole @ P4		
Low RG	2.488	2.504	2.499	2.495	2.494	2.496		
Int Diff	0.030	0.032	0.038	0.041	0.043	0.047		
Total Diff	0.048	0.037	0.046	0.053	0.056	0.060		
Side Weight (oz)		-0.369	-0.277	0.269	0.608	0.215		
BAL Depth (in)		3	3	3	3	3.5		
BAL Diameter (in)		1.125	1.125	1.125	1.125	1.25		

So what's the bottom line with all of these numbers? P1 placements reduce the dynamics of the ball by almost 20%. P2 placements are so minute in changing the dynamics that its almost the same as if the hole weren't drilled. And the need for a P2 if nothing changes -- to keep side weight within USBC regulations! P3 placements increase ball dynamics by 20% and P4 placements increase ball dynamics by 40%!

Hmmm so before we go much further, can you see how you might be able to adjust a bowler's preferred ball so that it can behave differently without much change required of the bowler?

Let's move to the second picture where we're using a 5 \times 4½ layout using a 55° drilling angle.

55° X 5 X 20°								
Parameter	Undrilled	P1 (PAP)	P2	P3	P4 (PSA)	Max Size Hole @ P3		
Low RG	2.488	2.493	2.492	2.491		2.493		
Int Diff	0.030	0.037	0.043	0.048	**P4 is not	0.054		
Total Diff	0.048	0.052	0.056	0.060	possible as it's	0.066		
Side Weight (oz)		-0.785	-0.385	0.031	too close to	-0.523		
BAL Depth (in)		3	3	3	thumb hole	3.5		
BAL Diameter (in)		1	1	1		1.25		
55° X 5 X 45°								
Parameter	Undrilled	P1 (PAP)	P2	P3	P4 (PSA)	Max Size Hole @ P3		
Low RG	2.488	2.499	2.498	2.496	dula D. A. J.	2.499		
Int Diff	0.030	0.033	0.039	0.044	**P4 is not possible as	0.050		
Total Diff	0.048	0.042	0.046	0.050	it's	0.056		
Side Weight (oz)		-0.831	-0.484	-0.100	too close to	-0.762		
BAL Depth (in)		3	3	3	thumb hole.	3.5		
BAL Diameter (in)		1	1	1	noic.	1.25		
55° X 5 X 70°								
Parameter	Undrilled	P1 (PAP)	P2	P3	P4 (PSA)	Max Size Hole @ P4		
Low RG	2.488	2.500	2.500	2.499	2.499	2.501		
Int Diff	0.030	0.031	0.038	0.044	0.047	0.054		
Total Diff	0.048	0.040	0.044	0.047	0.049	0.056		
Side Weight (oz)		-0.554	-0.300	0	0.331	-0.138		
BAL Depth (in)		3	3	3	3	3.5		
BAL Diameter (in)		1	1	1	1	1.25		

See how the trend continues? And now let's move to the third picture where we're using a $2\frac{1}{4}$ X 6 layout using a 70° drilling angle.

70° X 2¼ X 20°								
Parameter	Undrilled	P1 (PAP)	P2	P3	P4 (PSA)	Max Size Hole @ P3		
Low RG	2.488	2.497	2.495	2.491	**P4 is	2.497		
Int Diff	0.030	0.031	0.034	0.038	not	0.042		
Total Diff	0.048	0.043	0.048	0.056	possible as it's	0.058		
Side Weight (oz)		-0.992	-0.731	-0.285	too close	-0.946		
BAL Depth (in)		3	3	3	to thumb	3.5		
BAL Diameter (in)		1	1	1	hole.	1.25		
70° X 2¼ X 45°								
Parameter	Undrilled	P1 (PAP)	P2	P3	P4 (PSA)	Max Size Hole @ P4		
Low RG	2.488	2.499	2.495	2.489	2.487	2.489		
Int Diff	0.030	0.028	0.033	0.037	0.040	0.046		
Total Diff	0.048	0.040	0.048	0.057	0.062	0.068		
Side Weight (oz)		-0.808	-0.538	0.146	0.862	0.885		
BAL Depth (in)		3	3	3	3	3.5		
BAL Diameter (in)		1	1	1	1	1.25		
70° X 2¼ X 70°								
Parameter	Undrilled	P1 (PAP)	P2	P3	P4 (PSA)	Max Size Hole @ P4		
Low RG	2.488	2.503	2.498	2.491	2.488	2.490		
Int Diff	0.030	0.029	0.035	0.041	0.043	0.047		
Total Diff	0.048	0.037	0.047	0.059	0.064	0.068		
Side Weight (oz)		-0.931	-0.739	0.023	0.869	0.777		
BAL Depth (in)		3	3	3	3	3.5		
BAL Diameter (in)		1.125	1.125	1.125	1.125	1.25		

RECAP

Now let's recap by comparing the Total Diffs in terms of percentage increase and decrease with this particular ball whose undrilled total diff is 0.048. Notice how the ball's dynamics weaken as the angles increase for balance holes placed at P1 (PAP) and how they strengthen with reference to placement at either P3 or P4.

40° Drill				
Angel to VAL	20 °	45°	70 °	
Min @ P1 (PAP)	0.046	0.039	0.037	
% change	-4.2	-18.8	-22.9	
Max @ P4 (PSA Max)	0.069	0.063	0.060	
% change	43.8	31.3	25.0	
55° Drill				
Angel to VAL	20 °	45°	70°	
Min @ P1 (PAP)	0.052	0.042	0.040	
% change	8.3	-12.5	-16.7	
Max @ P3 /P4 (PSA Max)	0.066	0.056	0.056	P3 is the strongest @ 20°
% change	37.5	16.7	16.7	P4 is the strongest @ 45° and 70°
70° Drill				
Angel to VAL	20 °	45°	70 °	
Min @ P1 (PAP)	0.043	0.040	0.037	
% change	-9.8	-16.7	-23.5	
Max @ P3/ P4 (PSA Max)	0.058	0.068	0.068	P3 is the strongest @ 20°
% change	20.8	41.7	41.7	P4 is the strongest @ 45° and 70°

Conclusion

The numbers simply prove that in coordination with the drilling layout, placement of the balance hole is rather simple and generates a significant amount of impact on the final product. Armed with this new information, matching bowlers to equipment to lane conditions becomes much easier! The bottom line -- it makes sense!