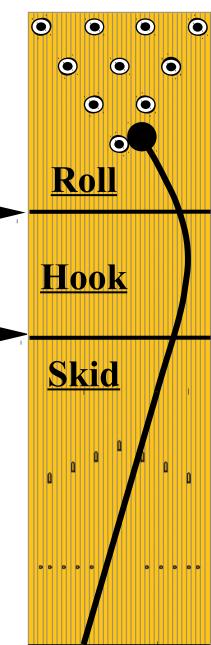

The Truth about Drilled Bowling Balls and why they react the way they do

presenter

Understanding Ball Motion

Three Phases of Ball Motion


- *Least ball speed
 *Most hitting power
- Maximum rev rate Axis rotation & tilt
- Least axis rotation are minimal and equal

- Less ball speed
- More rev rate
- Force created by the rev rate exceeds the *Less axis rotation force created by the ball speed

- *Highest Ball Speed
- Lowest Rev Rate
- Maximum Axis Rotation
- Force created by the ball speed exceeds the force created by the rev rate

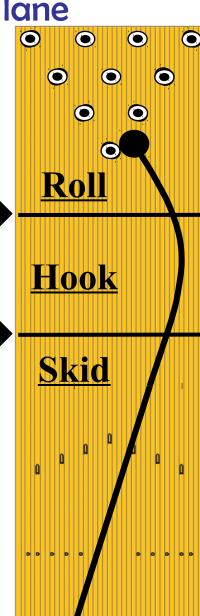
Force from speed = force from revs

GRAPHICAL ANALYSIS

USBC Ball Motion

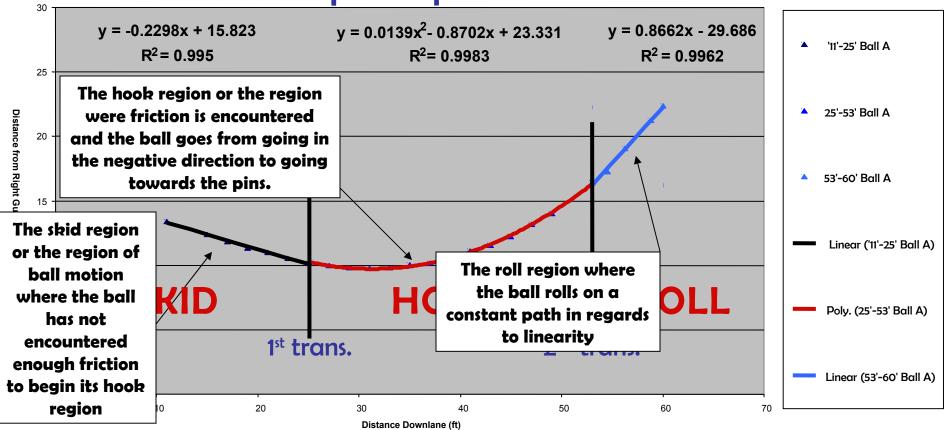
Study

Data provided by 23 sensor Super CATS lane


$$Y = mx + b$$
 (linear)

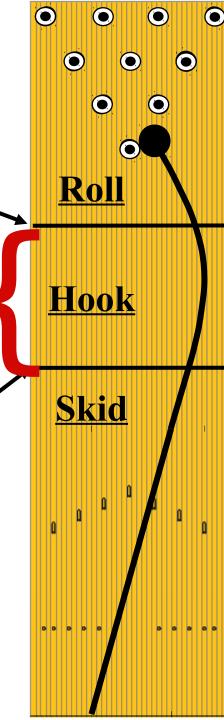
- 2nd transition

$$Y = ax^2 + bx + c$$


1st transition

Y = -mx + b (linear)

Explaining the Phases of Ball Motion



The Effects of Cores and Coverstocks on Ball

This transition is dominated by the mass properties of the drilled ball.

The length of the hook zone is determined by the spin time of the drilled ball.

This transition is dominated by the surface roughness of the coverstock.

SYMMETRICAL or ASYMMETRICAL

Definition of an Asymmetrical Ball

An asymmetrical ball must display two characteristics. They are:

- 1. It must have a PSA.
- 2. It must have an intermediate differential.

All bowling balls that have a PSA and an intermediate differential must be asymmetrical by definition.

Definition of a Symmetrical Ball

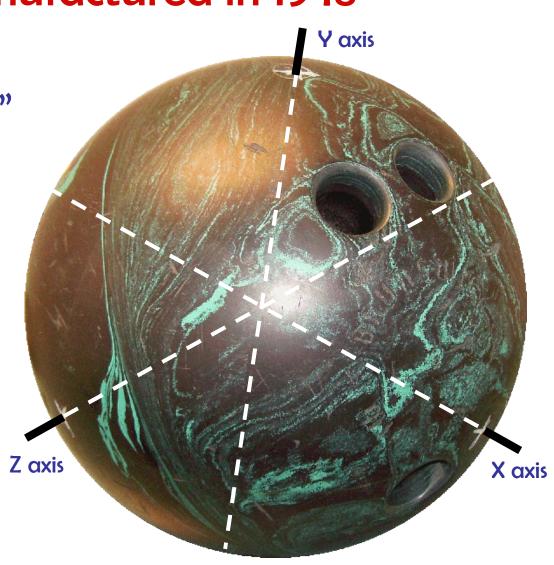
A symmetrical ball does not have a PSA and has no intermediate differential.

All bowling balls that have no PSA and no intermediate differential must be symmetrical by definition.

All drilled bowling balls have a PSA and intermediate differential.

Therefore, there is no such thing as a drilled symmetrical ball by definition. All drilled balls are asymmetrical!

Drilled bowling balls have different degrees of asymmetry, but they are ALL asymmetrical.


Drilled Brunswick

Minerafite Manufactured in 1948

Low RG axis = 2.710" Int. diff. = .010"

Total diff. = .015"

The drilled ball is asymmetrical by definition!

Mass Properties of a Bowling Ball

The mass properties measure the dynamic motion potential of a bowling ball.

The mass properties we are concerned with are the values of the low RG axis, the high RG axis, and the intermediate RG axis.

Using these values will allow us to calculate the total differential and the intermediate differential of the ball.

Necessary Mass Properties

It is necessary to specify three of the mass properties to define the dynamic potential of a bowling ball. The three mass properties necessary are:

- 1. The RG of the low RG axis
- 2. The intermediate differential
- 3. The total differential

The RG of the high RG axis = the RG of the low RG axis + the total differential

The RG of the int. RG axis = the RG of the high RG axis - the int. differential

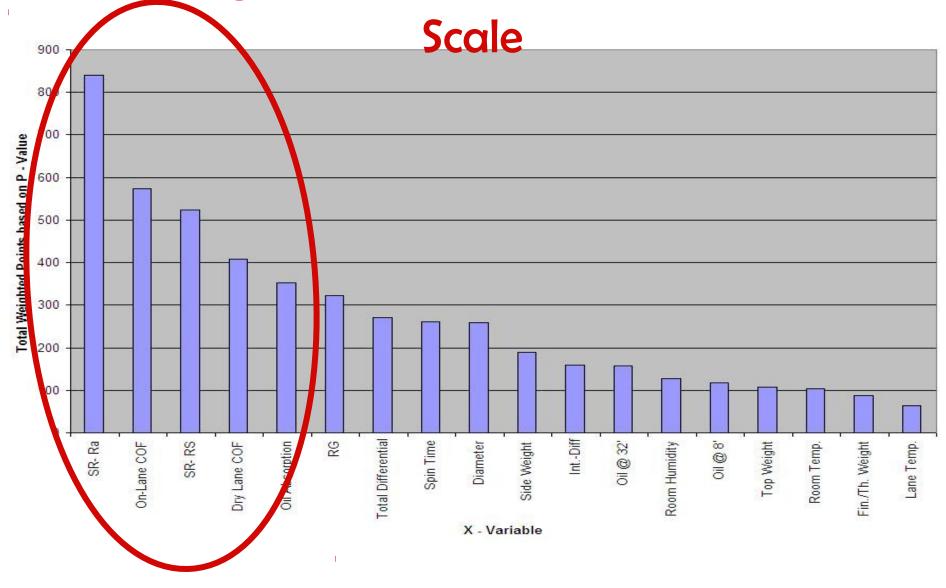
Which RG really matters?

- Is it the LOW RG axis?
- Is it the HIGH RG axis?
- Is it the INTERMEDIATE RG axis?
- Is that of the drilled or undrilled ball?
- Is it the RG of the PAP?
 Obviously of the drilled ball!

The ANSWER

- The RG of the PAP
- The RG value of the PAP remains the same throughout the entire axis migration of the drilled ball.

Essential Elements to scoring


- 1. Proper execution during the delivery.
- 2. Determine the shape of the ball motion that will score.
- 3. Let the lane tell you where to put your feet.

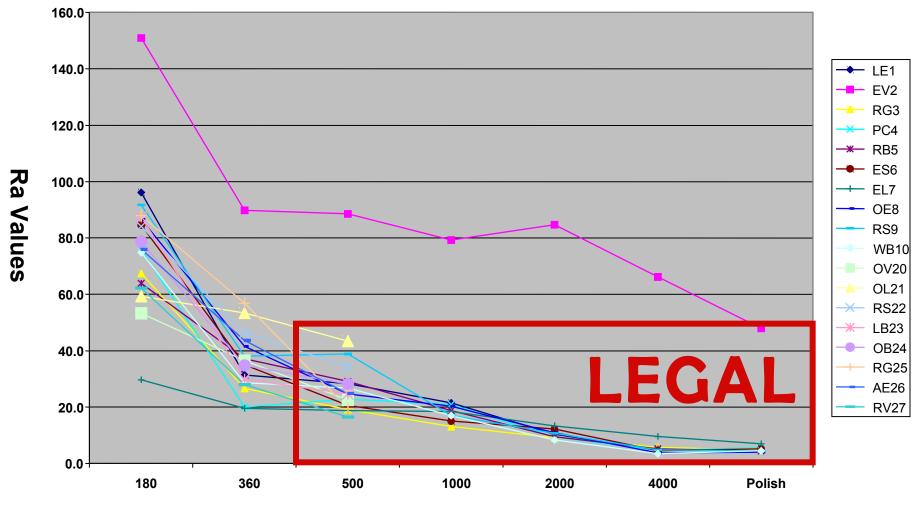
Factors affecting the reaction of drilled Bowling Balls

Coverstock (chemical composition and surface texture)

a Better Understanding of Coverstocks and Surface Preparation

Most Significant Variables - 18 Point

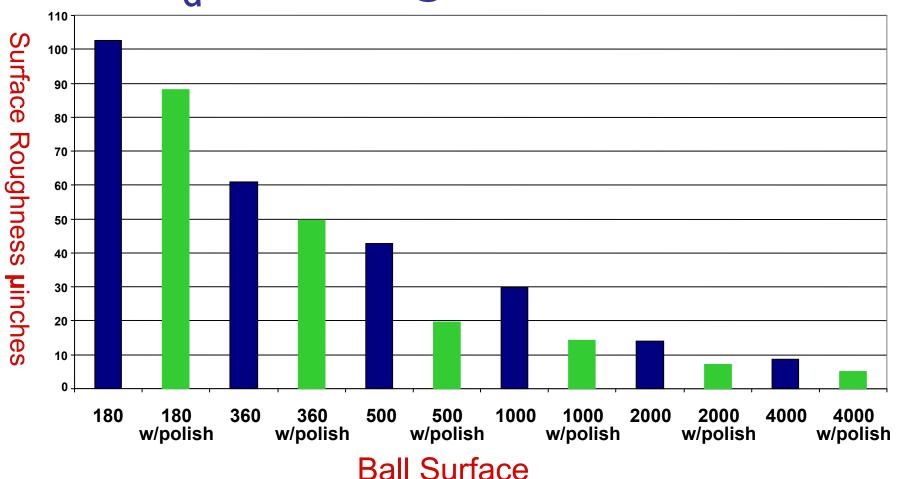
coverstock variables


©2008 USBC

Understanding Ra

Ra is defined as the height of the micro-spikes of the coverstock when it is measured scientifically.

Surface Roughness Ra - 18


(Range of Balls on Market)
Samples

Abralon Finish

How Surface Changes affect

R_a - Average Surface Test

Surface

Texture

Wet sanded with 320 to 400 grit paper

Scuffed with a good burgundy pad

Sanded with 600 grit paper

Scuffed with a grey pad

Wet sanded with 1000 grit paper

Wet sanded with 2000 grit paper

Wet sanded with 4000 grit paper

Polished with compound

Polished with ball polish

Polished with ball polish containing a slip agent

earliest breakpoint

latest breakpoint

Factors affecting the reaction of drilled Bowling Balls

- Coverstock (chemical composition and surface texture)
- Ratio of Intermediate Differential to Total Differential (int. diff./total diff.) of the drilled ball

Differential

The diff Rebital ratio is defined as intermediate differential divided by the total differential

(Int. Diff. / Total Diff.)

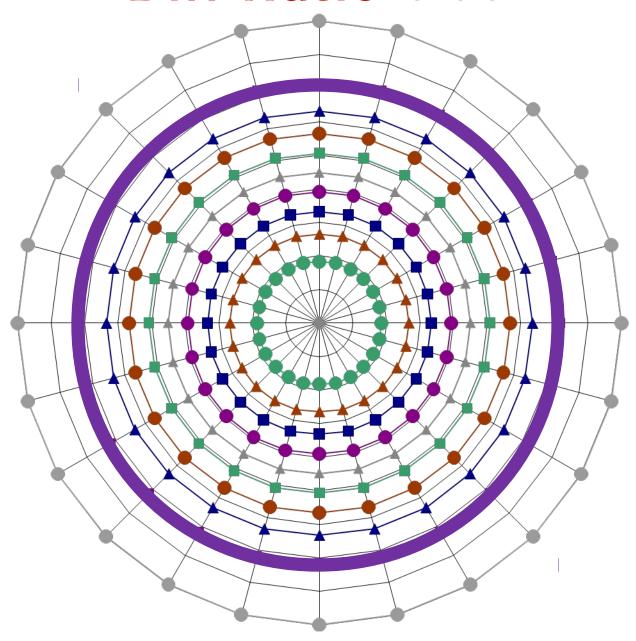
the Effect of Diff. Ratio

An indicator of the sharpness of the break point. The larger the diff. ratio, the sharper the break point.

Diff. Ratios < .25 yield a smoother, more continuous, break point.

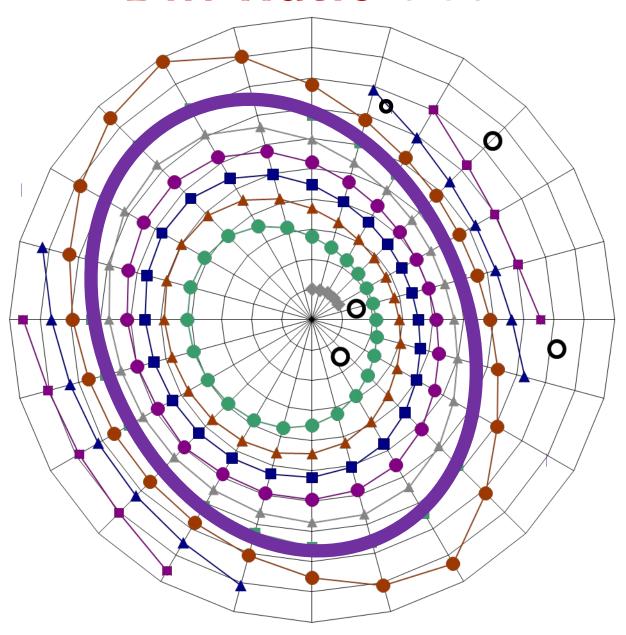
Diff. Ratios of .25 to .45 yield a medium break point.

Diff. Ratios > .45 yield sharper, more angular break points.

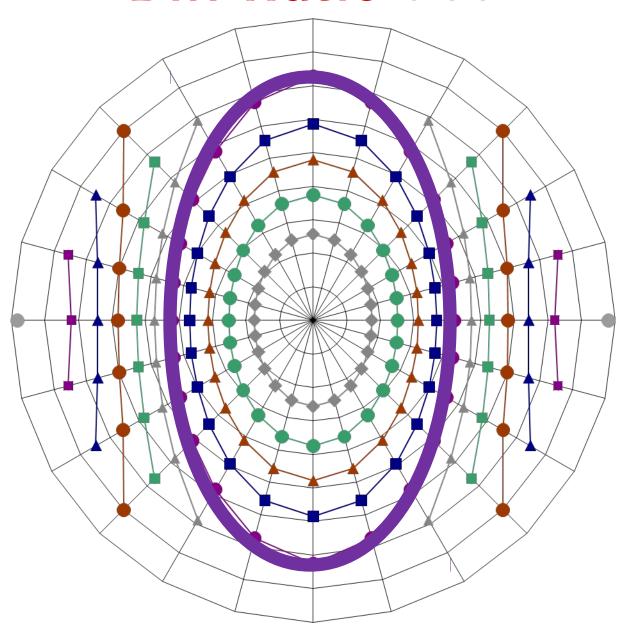

Contours

RG contours are all the points on the surface of the ball that have the same RG value.

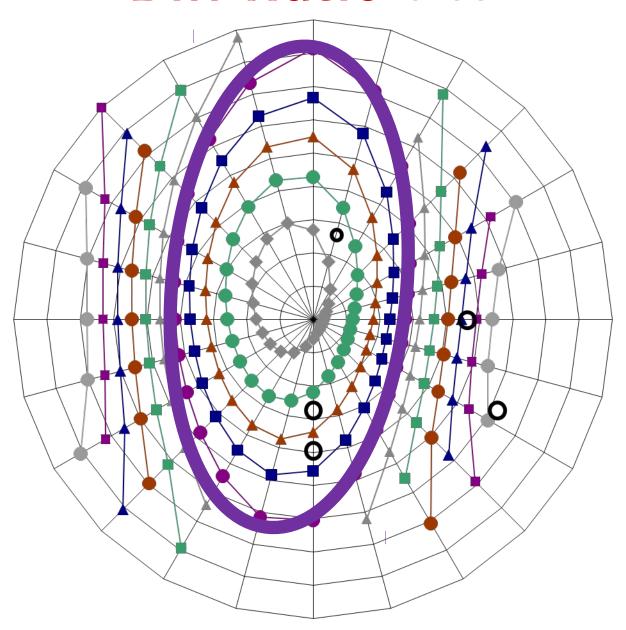
RG contours are important because the migrating PAP will follow the RG contour as the ball flares. That means that the RG of the PAP will remain the same during the ball's entire path down the lane. The bowler will dictate the initial PAP, but the RG contour of the ball dictates the path of the migrating axis.

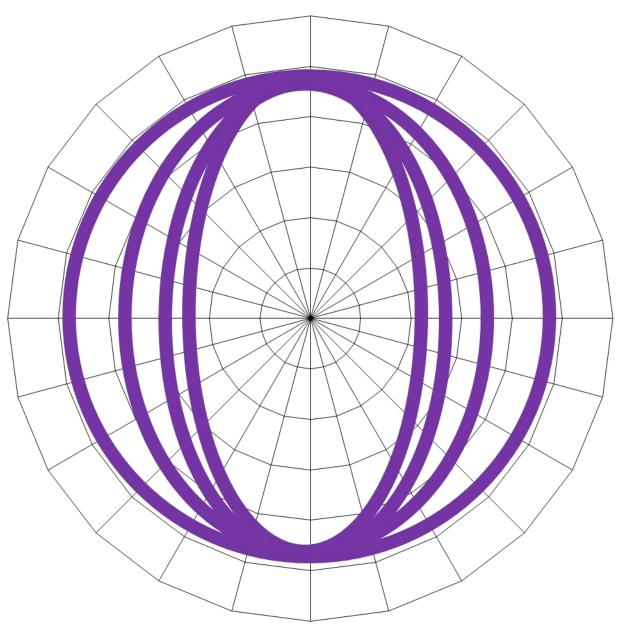

RG Contour of a Symmetrica Ball

Diff Ratio 0.00



RG Contours of Asymmetrica Balls


Diff Ratio 0.30


Diff Ratio 0.50

Diff Ratio 0.65

RG Contour Comparison

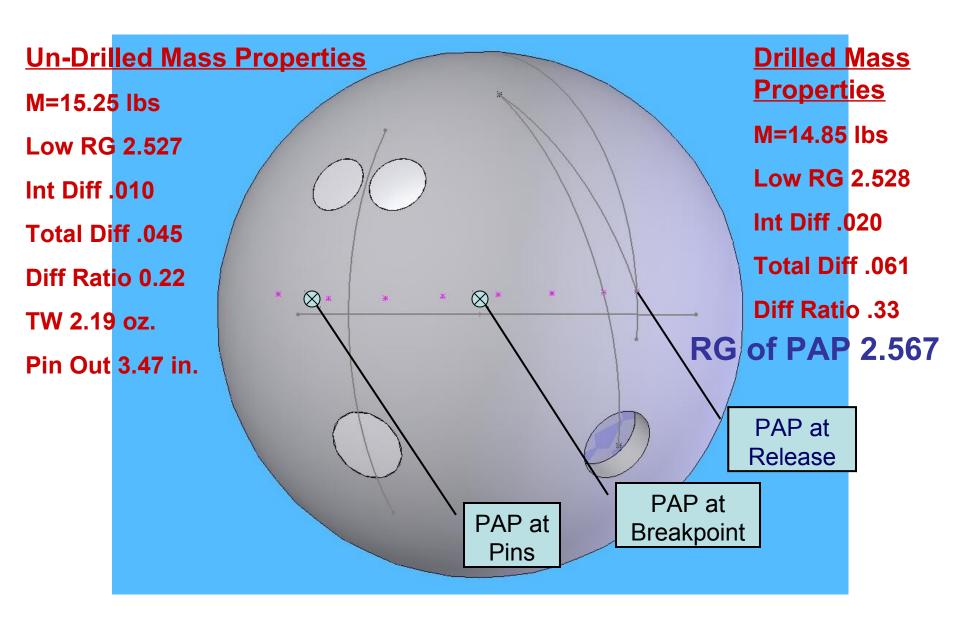
a study of Axis Migration Paths

the RG of the Migrating PAP

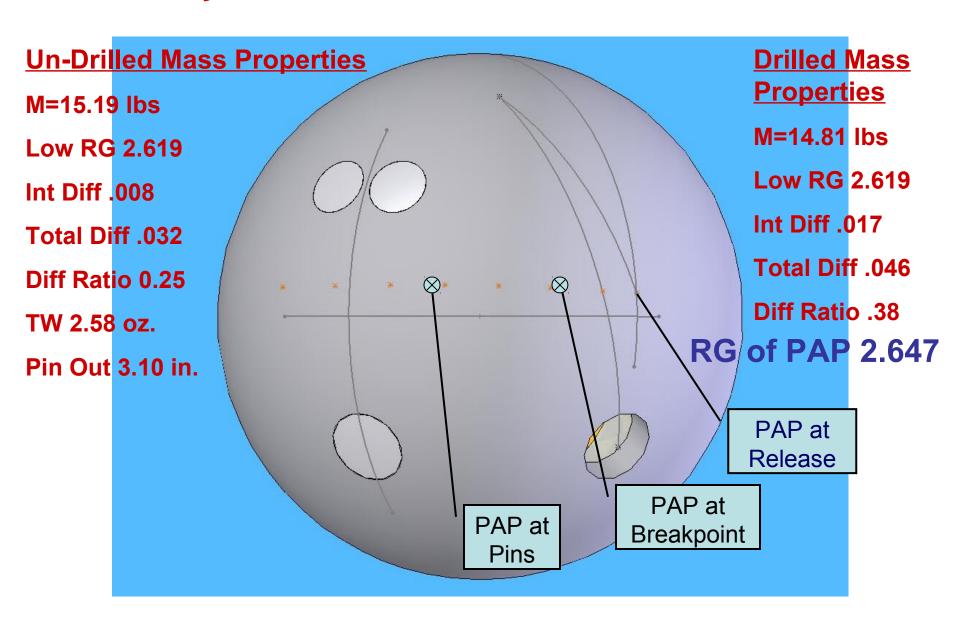
Remember, the RG of the Migrating PAP remains the same during the entire migration of the PAP.

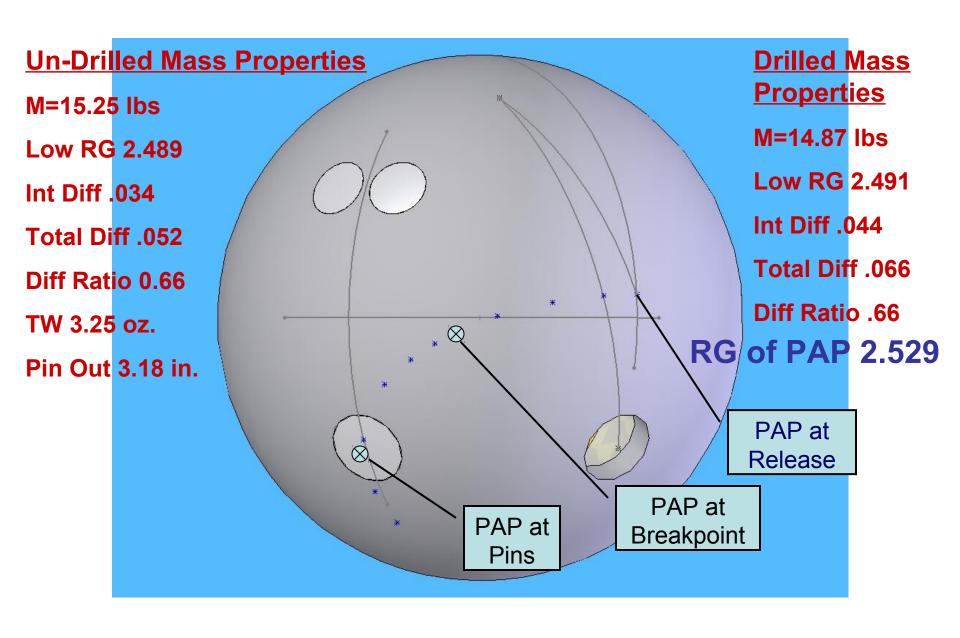

The shape of the axis migration path results from the differential ratio of the drilled ball.

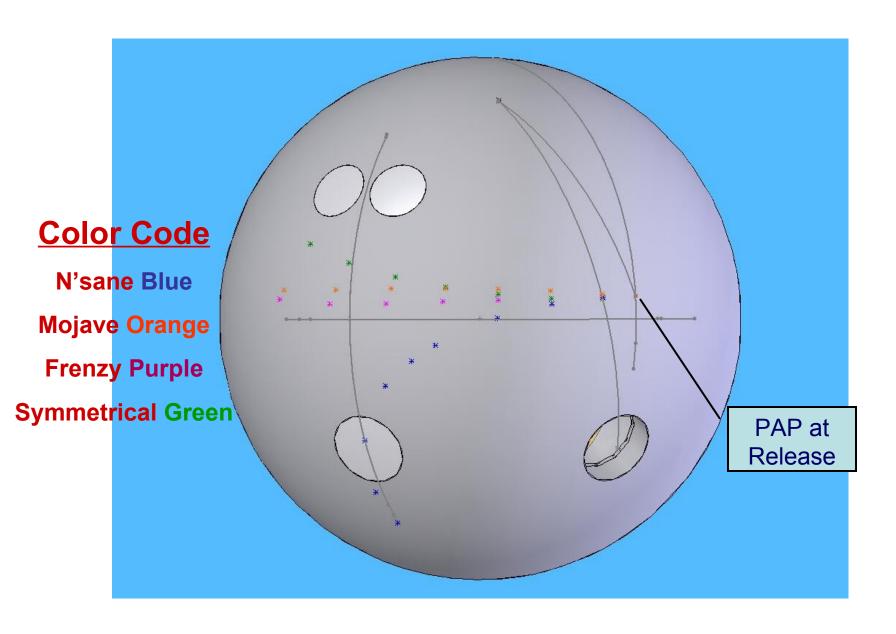
The length of the axis migration path results from the total differential of the drilled ball.


Factors affecting the reaction of drilled Bowling Balls

- Coverstock (chemical composition and surface texture)
- Ratio of Intermediate Differential to Total Differential (int. diff./total diff.) of the drilled ball
- Total Differential of the drilled ball


Symmetrical 10x4.25x20 BAL P4


FRENZY 10x4.25x20 BAL P4


Mojave 10x4.25x20 BAL P4

N'sane Lev RG 10x4.25x20 BAL P4

Combo Ball 10x4.25x20 BAL P4

Mass Properties of Drilled Balls Summary

Ball	Mass (lbs)	Low RG	Int Diff	Total Diff	Diff Ratio	RG of PAP
'Nsane LevRG	14.87	2.491	.044	.066	.66	2.529
Mojave	14.81	2.619	.017	.046	.38	2.648
Frenzy	14.85	2.528	.020	.061	.33	2.567
Symmetrical	14.83	2.502	.012	.066	.18	2.544

Drilling: 10° X 4.25" x 20° with a **P4** hole

By choosing a drilling technique, the location and the size of the balance hole, a ball driller can now reduce the strength of the drilled ball's reaction by as much as 29% or increase it by as much as 55% using current USBC specifications.

To learn about more about effective drilling techniques, read "Dual Angle Layouts with Gradient Line **Balance Hole Placements**" at www.morichbowling.com, or forum.bowlingchat.net where all the issues of bowling technology are discussed on a daily basis, especially the "Mo and Friends" forum.

©2010 Mo Pinel

Summary of Drillings for Freshour, RipR and Nsane

	Symmetrical Ball with Freshour Core										
Mass	Drilling	Low RG	Diff	Int Diff	Ratio	RG of PAP	Pin Out	Top Wt.			
16.06	Undrilled	2.496	0.047	0.000	0.00		3.2 in	2.6 oz			
15.59	10x4.25x20 P4	2.500	0.063	0.013	0.20	2.540					
15.59	30x4.25x20 BAL P4	2.501	0.066	0.020	0.30	2.536					
15.60	65x4x30 BAL P4	2.502	0.061	0.020	0.32	2.535					
15.56	70x5x45 BAL P2	2.508	0.054	0.016	0.29	2.551					
15.82	80x2.25x50 NO BAL Hole	2.501	0.049	0.006	0.12	2.507					
15.52	80x2.25x50 BAL P1	2.519	0.035	0.003	0.09	2.530					

	MoRich RipR										
Mass	Drilling	Low RG	Diff	Int Diff	Ratio	RG of PAP	Pin Out	Top Wt.			
16.08	Undrilled	2.533	0.042	0.013	0.32		3.2 in	2.9 oz			
15.58	10x4.25x20 P4	2.537	0.061	0.027	0.44	2.576					
15.58	30x4.25x20 BAL P4	2.537	0.065	0.036	0.55	2.569					
15.54	65x4x30 BAL Dbl-Thm	2.540	0.063	0.039	0.62	2.564					
15.51	70x5x45 BAL P2	2.547	0.050	0.029	0.59	2.575					
15.84	80x2.25x50 NO BAL Hole	2.536	0.046	0.018	0.40	2.539					
15.56	80x2.25x50 BAL P1	2.554	0.031	0.014	0.46	2.561					

	MoRich 'Nsane LevRG										
Mass	Drilling	Low RG	Diff	Int Diff	Ratio	RG of PAP	Pin Out	Top Wt.			
16.06	Undrilled	2.471	0.052	0.036	0.70		3.5 in	2.6 oz			
15.65	10x4.25x20 P4	2.472	0.067	0.045	0.68	2.512					
15.66	30x4.25x20 BAL P4	2.472	0.070	0.053	0.76	2.502					
15.56	65x4x30 BAL Dbl-Thm	2.480	0.067	0.057	0.85	2.496					
15.52	70x5x45 BAL P2	2.485	0.057	0.047	0.82	2.505					
15.82	80x2.25x50 NO BAL Hole	2.475	0.055	0.040	0.72	2.475					
15.53	80x2.25x50 BAL P1	2.492	0.041	0.035	0.86	2.497					

Drilled MoRich

Name	Serial	Drilling Technique	Low RG Axis	Undrilled i-Diff	T-Diff
LevRG	183	10° x 3 3/8" x 20°	2.485	0.035	0.049
LevRG	138	90° x 3 3/8" x 20°	2.484	0.034	0.049
LevRG	216	90° x 4 1/2" x 70°	2.483	0.034	0.050
LevRG	198	50° x 5" x 45°	2.481	0.034	0.053

Name	Serial	Drilling Technique After Drilling	RG of the PAP	Тор	Side	Finger
LevRG	183	12° x 3 5/8" x 17°	2.514	-0.75	0.75	0.675
LevRG	138	78° x 2 1/4" x 3°	2.496	-0.75	-0.25	0.75
LevRG	216	90° x 2 3/8" x 70°	2.488	-0.50	0.50	-0.375
LevRG	198	50° x 5" x 45°	2.509	0.375	0.625	0.50

Drilled MoRich

Name	Serial	Drilling Technique After Drilling	Sum of the Angles	RG of the PAP	1st trans	2nd trans	Hook Zone Length	A Score	Break point	Frictional Efficiency
LevRG	183	12° x 3 5/8" x 17°	29	2.514	25	41	16	0.0177	32.12	0.1309
LevRG	138	78° x 2 1/4" x 3°	81	2.496	29	43	14	0.0162	34.10	0.1175
LevRG	216	90° x 2 3/8" x 70°	160	2.488	29	49	20	0.0165	34.56	0.1194
LevRG	198	50° x 5" x 45°	95	2.509	27	47	20	0.0153	31.95	0.1133

Factors affecting the reaction of drilled Bowling Balls

- Coverstock (chemical composition and surface texture)
- Ratio of Intermediate Differential to Total Differential (int. diff./total diff.) of the drilled ball
- Total Differential of the drilled ball
- RG of the PAP

Ball surface, RGs, and the total differential, have similar effects on ball motion. They will all affect the rate at which the ball transitions. Differential ratio has the greatest effect on the shape of the ball motion. Pin to PAP distance affects the rate that the ball transitions by affecting flare, as well as the shape of the ball motion.

The SPIN TIME of the Drilled Ball

The spin time of the drilled ball measures the complex relationship between the ratio of intermediate diff. to the total diff., the total diff., and the RG of the PAP.

Learn how to accurately analyze bowling balls for yourself by using the "USBC Ball Analysis Form" at bowl.com.

IBPSIA Advanced HOTS is held annually in conjunction with BOWL EXPO. For more info about this and others educational classes contact IBPSIA.

THANX for attending

MO and All the people at MoRich!